Abstract

Understanding the active sites and reaction mechanisms of Ni-based catalysts, such as Ni/Al2O3, toward methane is a prerequisite for improving their rational design. Here, the gas-phase reactivity of NiAlO3+ cations toward CH4 is studied using mass spectrometry combined with density functional theory. Similar to our previous study on NiAl2O4+, we find evidence for the formation of both the methyl radical (CH3•) and formaldehyde (CH2O). The first step for methane activation is hydrogen atom abstraction by the terminal oxygen radical Ni(O)2AlO• from methane forming a [Ni(O)2AlOH+, •CH3] complex and leaving the Ni-oxidation state unchanged. The second C-H bond is subsequently activated by the association of a bridged Ni-O2--Al. The oxidation state of the Ni atom is reduced from +3 to +1 during the formation of formaldehyde. Compared to Al2O3+/CH4 and YAlO3+/CH4 systems, the Ni-atom substitution increases the overall reaction rate by roughly an order of magnitude and yields a CH3•/CH2O branching ratio of 0.62/0.38. The present study provides molecular-level insights into the highly efficient gas-phase reaction mechanism contributing to an improved understanding of methane conversion by Ni/Al2O3 catalysts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.