Abstract

Performance of membrane such as the lateral flow wicking time and protein binding ability are important to generate consistent results for diagnostics purposes. Different diagnostic kit need different surface properties of membrane, structures and dimension. This work evaluates the feasibility of controlling membrane pores morphology through thermal-mechanical stretching. Results shows that membrane fabricated using longer nitrocellulose (NC) polymer chain length produced smaller pores with lower porosity (56%). Thus, it took longer time of 32s to migrate the testing liquid along the membrane strip. By having higher membrane’s porosity (72.3%), the membrane synthesized using shorter NC chain length exhibited faster wicking time, which is 3 times faster (wicking time of 8s) than that of the membrane produced with longer NC chain length. In terms of the thermal-mechanical stretching effects, the stretched membranes (both uniaxial and biaxial directions) had demonstrated improved immunoassay performances compared to the unstretched membrane. Specifically, uniaxial stretching is preferable than biaxial stretching configuration, due to the great improvement of lateral wicking time (22% faster) without jeopardize the membrane protein binding capacity (only 1.7% decrement), in relative to the unstretched membrane. This study provides some interesting insight on the physical membrane modification to provide better performance in immunoassay applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.