Abstract

Novel silk fibroin fiber reinforced poly(butylene succinate) (PBS) biocomposites have been developed by twin-screw extrusion and injection molding processes, varying the fiber content from 10 to 40 % by weight. The thermal stability, thermal expansion, dynamic mechanical, tensile, flexural, and impact properties and water absorption behavior of the biocomposites with various silk fiber contents are investigated. The obtained results are consistent with each other. The thermal stability of the biocomposites depends on the silk fibroin fiber content, reflecting the thermal characteristics of both PBS and silk fiber. The coefficient of thermal expansion is somewhat decreased by incorporating silk fibroin fibers into the PBS. The storage modulus, the tensile modulus, and the flexural properties are gradually increased with increasing the fiber content up to 40 wt%. The Izod impact strength is the highest at 20-25 wt% fiber content, as similarly found in the tensile strength. The percentage of water absorption is gradually increased with increasing the fiber content as well as the water immersion time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.