Abstract

Diglycidyl ether of bisphenol-A (DGEBA) epoxy resin system filled individually with organoclay (OC) and unmodified clay (UC) were synthesized by mechanical shear mixing with the addition of diamino-diphenylmethane (DDM) hardener. The unmodified clay used was Na+-Montmorillonite (MMT) and the organoclay was alkyl ammonium treated MMT clay. The reinforcement effect of OC and UC in the epoxy polymer on thermal, mechanical and vibration properties were studied. X-ray diffraction (XRD) and Transmission electron microscopy (TEM) were used to study the structure and morphology of nanocomposites. Curing study shows that the addition of OC in epoxy resin aids the polymerization by catalytic effect, and UC addition does not show any effect in the curing behavior of epoxy polymer. Thermogravimetry analysis (TGA) shows enhanced thermal stability for epoxy with OC fillers than that of epoxy with UC fillers. The epoxy with OC fillers shows considerable improvement on tensile and impact properties over pure epoxy polymer and epoxy with UC fillers. The improvement in tensile and impact properties of nanocomposites is supported with the fracture surface studies. Epoxy with OC fillers shows enhanced vibration characteristics than that of the pure epoxy polymer and epoxy with UC fillers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call