Abstract
This paper examined the mechanical and electrical properties of poly(tetrafluoroethylene- co-hexafluoropropylene: FEP) film modified by electron beam (EB). The simultaneous irradiation method with EB was adopted for the grafting of styrene and subsequent sulfonation onto FEP film. The thermal and mechanical characteristics of the irradiated FEP film, and also those of the grafted and sulfonated FEP films, were investigated by TGA, FT-IR spectrometer, and Instron. The simultaneous irradiation with EB facilitated the homogeneous grafting, as well as a high degree of grafting with a maximum value of around 60%, thereby allowing accurate control of the degree of grafting at doses ranging from 10 to 100 kGy. The grafting or sulfonation decreased the thermal stability of FEP, whereas it considerably increased its mechanical properties. The high radiation resistance of virgin FEP up to a dose of 100 kGy enabled the sulfonation of FEP film to considerably reinforce its polymeric structures except of 10 kGy, thereby increasing its tensile strength at 30 kGy by two-fold compared to that of the virgin FEP film. The ion conductivity (IC) and ion-exchange capacity (IEC) values of the FEP membrane (125 μm thick), which were dependant on the degree of grafting, were 0.25 S cm −1 and 2.4 mmol/g, respectively, at 59.2% of the degree of grafting and were superior to those of the commercialized Nafion membrane (IC, 0.12 S cm −1; IEC, 0.9–1.0 mmol/g).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.