Abstract
AbstractLanthanum strontium cobaltite (LSCo) is considered as a good candidate cathode contact material for solid oxide fuel cells, due to high electrical conductivity. However, LSCo has a very large coefficient of thermal expansion (CTE) than the cells and metallic interconnects. As a result, poor mechanical stability is expected during thermal cycling. To minimize the CTE mismatch, we investigate a composite approach involving mixing LSCo with an inert material of low CTE, such as mullite at volume fractions from 0.1 to 0.4. Composite's CTE shows a decreasing trend with increasing mullite volume fractions and is consistent with model predictions. X‐ray powder diffraction analysis of sintered LSCo/mullite composites exhibits no presence of other phases for samples aged for 500 hours at 800°C, indicating chemical compatibility. Electrical conductivity by a 4‐pt method shows a decreasing trend with increasing mullite content. Contact strength of as‐sintered and thermally cycled samples show that only the composite with 0.4 volume fraction has a measurable strength; the other composites have no strength. Overall, the composite approach is demonstrated in the LSCo/mullite system to lower the CTE and hence achieve thermal cycle stability. The addition of the inert phase to the LSCo matrix, however, also reduces the electrical conductivity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Applied Ceramic Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.