Abstract

Many populations of shortnose sturgeon, Acipenser brevirostrum, in the southeastern United States continue to suffer from poor juvenile recruitment. High summer water temperatures, which may be exacerbated by anthropogenic activities, are thought to affect recruitment by limiting available summer habitat. However, information regarding temperature thresholds of shortnose sturgeon is limited. In this study, the thermal maximum method and a heating rate of 0.1°C min−1 was used to determine critical and lethal thermal maxima for young-of-the-year (YOY) shortnose sturgeon acclimated to temperatures of 19.5 and 24.1°C. Fish used in the experiment were 0.6 to 35.0 g in weight and 64 to 140 days post hatch (dph) in age. Critical thermal maxima were 33.7°C (±0.3) and 35.1°C (±0.2) for fish acclimated to 19.5 and 24.1°C, respectively. Critical thermal maxima significantly increased with an increase in acclimation temperature (p < 0.0001). Lethal thermal maxima were 34.8°C (±0.1) and 36.1°C (±0.1) for fish acclimated to 19.5 and 24.1°C, respectively. Lethal thermal maxima were significantly affected by acclimation temperature, the log10 (fish weight), and the interaction between log10(fish weight) and acclimation temperature (p < 0.0001). Thermal maxima were used to estimate upper limits of safe temperature, thermal preferences, and optimal growth temperatures of YOY shortnose sturgeon. Upper limits of safe temperature were similar to previous temperature tolerance information and indicate that summer temperatures in southeastern rivers may be lethal to YOY shortnose sturgeon if suitable thermal refuge cannot be found.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call