Abstract
Proton exchange membrane (PEM) fuel cells for transportation applications have relatively large active areas to meet the power demand and they require thermal management not only to maintain a proper operating temperature but also to manage the temperature distribution within the fuel cell. In this study, a thermal model of a PEM fuel cell and a thermal management system has been developed to investigate the criteria of thermal management and develop a thermal management strategy for fuel cells with large active cell areas. The fuel cell model consists of three sub-models to simulate the temperature-sensitive electrochemical reaction and capture the thermal management effect on the performance; a water transport model, an agglomerate structure electrochemistry model and a two-dimensional heat transfer model. The thermal management system model including radiator, cooling pump and fan is also employed for the investigation of the trade-off between the temperature distribution effect and the parasitic loss. The fuel cell operating temperature as a criterion for the thermal management is discussed related to the membrane durability and the safety margin during transient operations. Thermal management strategy for minimum cooling parasitic loss is proposed based on the simulation results in conjunction with the criterion of the operating temperature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.