Abstract

AbstractThe cold plate cooling system has become one of the most practical and promising Li‐ion battery thermal management systems for electric vehicles. The existing cold plate has complex structure with high production cost, and the energy consumption is relatively high. In this paper, a detailed optimization study of cavity cold plate is carried out. The heat generation data of the pouch Li‐ion batteries were obtained through experiments, and the data were applied to the finite element method simulation of the cavity cold plate thermal management system. The effects of cavity cold plate thickness (d1), cold plate inlet and outlet width (d2), and inlet coolant mass flow rate on battery temperature and cold plate pressure drop were discussed. The results showed that the optimization allowed the cavity cold plate to control the battery maximum temperature within 40°C and temperature difference within 5°C. Under the same volume of cold plates, the average pressure drop reduction rates of models where Δd (the difference between d1 and d2) is 1 mm are 65% higher than that of the models where d2 is 1 mm. This study has practical significance for improving the design efficiency of cavity cold plate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call