Abstract
The effect of fuel topology and control on thermal endurance of aircraft using fuel as a heat transfer agent was studied using an optimal dynamic solver (OPT). The dynamic optimal solutions of the differential equations governing the heat transfer of recirculated fuel flows for single- and dual-tank arrangements were obtained. The method can handle sudden jumps of operating conditions across different operating zones during mission and/or situations when control parameters have reached their physical limits. Although this method is robust in providing an optimal control strategy to prolong thermal endurance of aircrafts, it is not ideal for practical application because the method required iterative procedures to solve expensive nonlinear equations. The linear quadratic regulator (LQR), the feedback controller, can be derived by linearizing the adjoint equations at trim points to offer a simple control strategy, which can then be implemented directly in the feedback control hardware. The solutions obtained from both OPT and LQR were compared, and it was found two solutions were almost identical except in regions having sudden jump of operation conditions. Finally, a comparison between single- and dual-tank arrangements was made to demonstrate the importance of the flow topology. The study shows the dual-tank arrangement allows flexibility in how energy is managed and can release energy faster than a single-tank topology and hence provides improved aircraft thermal endurance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Thermal Science and Engineering Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.