Abstract
Flexible heaters can perfectly fit with undevelopable surfaces for heating in many practical applications such as thermotherapy, defogging/deicing systems and warming garments. Considering the requirement for stretchability in a flexible heater, certain spacing needs to be retained between serpentine heat sources for deformation which will inevitably bring critical challenges to the thermal uniformity. In order to reconcile these two conflicting aspects, a novel method is proposed by embedding the serpentine heat source in orthotropic layers to achieve comprehensive performance in stretchability and uniform heating. Such a scheme takes advantage of the ability of orthotropic material to control the heat flow distribution via orthotropic thermal conductivity. In this paper, an analytical heat conduction model with orthotropic substrate and encapsulation is calculated using Fourier cosine transform, which is validated by finite element analysis (FEA). Meanwhile, the effects of the orthotropic substrate or encapsulation with different ratios of thermal conductivity and the geometric spacing on the thermal properties are investigated, which can help guide the design and fabrication of flexible heaters to achieve the goal of uniform heating.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.