Abstract

BackgroundThis article examines a T-shaped lithium-ion battery pack (BPC) consisting of six prismatic cells using the finite element method (FEM). An optimal model is introduced for batteries’ thermal management (THMT) by changing the position of the inlets and outlets. MethodsThe outlet is where the fully developed airflow leaves, and the walls use the no-slip boundary condition. The batteries are placed in an enclosure filled with phase change material (PCM) to create temperature uniformity on the batteries. The hydrodynamic and thermal modeling of airflow and the melting and freezing of PCM are performed in this study using the COMSOL program. Significant findingsThe results demonstrate that the batteries’ maximum temperature (TMX) changes by changing the location of the inlets. Changing the position of inlets also affects the melting and freezing of the PCM, and better temperature uniformity on the batteries may be achieved using some models. The M4 model, in which the inlet and outlet are on the left and right sides, and an outlet is in the center, is the most appropriate model for industrial applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call