Abstract

The wall catalytic steam reforming (WCSR) is expected to be used in chemical recuperative cycle of scramjet because of its high chemical heat sink and low coke deposition. Therefore, a numerical model is established and validated based on experiments to improve utilization of chemical heat sink, generated from WCSR at supercritical pressures. The numerical results indicate that a maximal value exists at the axial distribution of chemical heat sink under the combined influence of endothermic and exothermic reactions in WCSR. The chemical heat sink increases to the maximal value, and then decreases after it. The radial chemical heat sink is of layer distribution. According to the fundamental numerical study on influence of key parameters on the WCSR, the results indicate that the maximal value of chemical heat sink has reduced by 15% as operation pressure increases from 3 MPa to 5 MPa, which is distinctly different from that of pyrolysis. As velocity decreases, the maximal value of chemical heat sink moves toward inlet and the total chemical heat decreases. In addition, the chemical heat sink increases with inlet water content, and the maximal value of chemical heat sink has increased by about 50% as inlet water content increases from 5% to 10%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.