Abstract

Concentrator photovoltaics (CPV) is a cost-effective method for generating electricity in regions that have a large fraction of direct solar radiation. With the help of lenses, sunlight is concentrated onto miniature, highly efficient multi-junction solar cells with a photovoltaic performance above 40%. To ensure illumination with direct radiation, CPV modules must be installed on trackers to follow the sun’s path. However, the costs of huge concentration optics and the photovoltaic technology used, narrow the market possibilities for CPV technology. Efforts to reduce these costs are being undertaken by the promotion of Cu(Inx,Ga1−x)Se2 solar cells to take over the high cost multi-junction solar cells and implementing more compact devices by minimization of solar cell area. Micrometer-sized absorbers have the potential of low cost, high efficiencies and good thermal dissipation under concentrated illumination. Heat dissipation at low (<10×) to medium (10 × to 100×) flux density distributions is the key point of high concentration studies for macro- and micro-sized solar cells (from 1 µm2 to 1 mm2). To study this thermal process and to optimize it, critical parameters must be taken in account: absorber area, substrate area and thickness, structure design, heat transfer mechanism, concentration factor and illumination profile. A close study on them will be carried out to determine the best structure to enhance and reach the highest possible thermal management pointing to an efficiency improvement.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.