Abstract

Ocean surveys show that extremely sharp thermal boundaries have limited the distribution of sockeye salmon (Oncorhynchus nerka) in the Pacific Ocean and adjacent seas over the past 40 years. These limits are expressed as a step function, with the temperature defining the position of the thermal limit varying between months in an annual cycle. The sharpness of the edge, the different temperatures that define the position of the edge in different months of the year, and the subtle variations in temperature with area or decade for a given month probably all occur because temperature-dependent metabolic rates exceed energy intake from feeding over large regions of otherwise acceptable habitat in the North Pacific. At current rates of greenhouse gas emissions, predicted temperature increases under a doubled CO2 climate are large enough to shift the position of the thermal limits into the Bering Sea by the middle of the next century. Such an increase would potentially exclude sockeye salmon from the entire Pacific Ocean and severely restrict the overall area of the marine environment that would support growth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call