Abstract

A thermal light correlated longitudinal imaging experiment is proposed. The quasi-thermal light beam is split into two beams, a test beam and a reference beam, respectively. The light in the test beam is scattered by two amplitude objects with a specific longitudinal distance between them, while the light of the reference beam travels uninterrupted. At the end of the test and reference beams, two charge-coupled detectors (CCDs) are used to measure the intensity of the optical field. Through intensity correlation measurement the images of the two detected objects can be achieved simultaneously, only if the distance between the objects is less than the longitudinal coherent length. The theoretical analysis shows that the longitudinal coherent length is determined by both the transverse size of the incoherent thermal light source and the length of the optical path. The quality of the correlated images of the two objects is improved greatly by making use of the orthogonal matching pursuit (OMP) and the proposed variant random orthogonal matching pursuit (Random-OMP) algorithms. The experimental results show that the Random-OMP algorithm is more effective than the OMP algorithm for increasing both the visibility and continuity of the images. The experimental scenario can mimic an optical tomography imaging system, and the two objects with longitudinal distance can be taken as the two transverse layers of a three-dimensional object. The proposed Random-OMP algorithm is effective for improving the quality of the tomography image and has potential value in optical tomography imaging technology using incoherent light sources.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call