Abstract
In this work, the light-induced lens effect due to thermal and/or photorefractive processes was studied in pyroelectric (undoped and Fe2+-doped) lithium niobate crystals (LiNbO3) using thermal lens spectrometry with a two-beam (pump–probe) mode-mismatched configuration. The measurements were carried out at two pump beam wavelengths (514.5 and 750 nm) to establish a full understanding of the present effects in this material (thermal and/or photorefractive). We present an easy-to-implement method to determine quantitative values of the pyroelectric coefficient (dP s/dT), its contribution to the thermal effect and other thermo-optical parameters like thermal diffusivity (D), thermal conductivity (K) and temperature coefficient of the optical path length change (ds/dT). These measurements were performed in LiNbO3 and LiNbO3:Fe (0.1 ppm Fe2+) crystals with c axis along the direction of laser propagation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.