Abstract

A thorough investigation of optical losses for the 1064nm emission in Nd3+-doped lead lanthanum zirconate titanate (PLZT) transparent ceramics is presented. Thermal lens experiments were carried out to evaluate thermo-optical properties and the fluorescence quantum efficiency of the emitting level 4F3/2. Excited-state absorption losses were measured in the emitting wavelength region, and the Auger upconversion energy transfer parameter γ was calculated. By using γ, the pump-intensity dependence of the optical gain at 1064nm, the fluorescence quantum efficiency, and the generation of heat in the ceramic were simulated for a high 803nm pump-power regime. Since the radiative and nonradiative losses in Nd:PLZT were verified to be considerably lower than in various commercial laser crystals and glasses, it is suggested that this material might become an interesting alternative for high-power laser emission.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call