Abstract

The ultrafast fs laser pulse heating of thin metal films is studied for the first time using the two-temperature model on the basis of the Fokker–Planck formalism. The incident laser radiation is multi-modal, while the electron temperature is described during the first 2 fs. The predictions are intended for use by experimentalists in optoelectronics, photonics, laser processing, electronics, and bio- and nanomedicine. The crucial role of the nano-sized spatial dimensions of the metal sample is highlighted. A significant result of this study is the interdependence between the target’s size, the phonon/lattice characteristics, and the coefficient β (the quotient of non-diffusive phenomena), which varies between zero (pure diffusive case) and one (pure non-diffusive case).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.