Abstract
A molecular dynamics (MD) simulation was performed on the coalescence kinetics and mechanical behavior of the pressure-assisted Cu nanoparticles (NPs) sintering at low temperature. To investigate the effects of sintering pressure and temperature on the coalescence of the nanoparticles, sintering simulations of two halve Cu NPs were conducted at the pressure of 0–300 MPa and the temperature of 300–500 K. A transition of the dominant coalescence kinetics from slight surface diffusion to intensive grain boundary diffusion and dislocation driven plastic flows were found when pressure was applied. Furthermore, atomic trajectories showed the effect of temperature on sintering was strongly dependent on the microstructures of Cu NPs. The atomic diffusion around defects can be significantly promoted by the elevated temperature. Additionally, based on the sintered structures, uniaxial tension simulation was implemented with a constant strain rate. Stress–strain curves and evolution of dislocation activities were derived. Improved mechanical behaviors, including larger elastic modulus and larger tensile strength, were obtained in the structure sintered under higher pressure and temperature. Among this study, sintering temperature and pressure consistently exhibited the same relative impact on affecting both coalescence and the mechanical properties of the sintered structure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.