Abstract

AbstractTrace amounts of hydrogen in olivine can significantly increase its conductivity. However, the conduction mechanism in hydrous olivine is still unclear, which hinders the in‐depth understanding of the high conductivity structures of the asthenosphere. We investigate the proton conduction mechanism in hydrous olivine usingab initiocalculations. Several models were examined using climbing image nudged elastic band andab initiomolecular dynamics methods. We found that hydrogen trapped at the Mg (or Fe) defect is more mobile than hydrogen trapped at the Si defect. At high temperature, we observed the ionization of hydrogen from cation defects leading to high and anisotropic proton conductivity along the [100] direction. The highly anisotropic conductivity caused by thermal ionized hydrogen at high temperature explains the experimental observations on olivine single crystals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.