Abstract

Linear and non-linear thermal instability in a rotating anisotropic porous medium, saturated with viscoelastic fluid, has been investigated for free–free surfaces. The linear theory is being related to the normal mode method and non-linear analysis is based on minimal representation of the truncated Fourier series analysis containing only two terms. The extended Darcy model, which includes the time derivative and Coriolis terms has been employed in the momentum equation. The criteria for both stationary and oscillatory convection is derived analytically. The rotation inhibits the onset of convection in both stationary and oscillatory modes. A weak non-linear theory based on the truncated representation of Fourier series method is used to find the thermal Nusselt number. The transient behaviour of the Nusselt number is also investigated by solving the finite amplitude equations using a numerical method. The results obtained during the analysis have been presented graphically.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.