Abstract

ABSTRACT The Rosetta mission to comet 67P/Churyumov–Gerasimenko has provided new data to better understand what comets are made of. The weak tensile strength of the cometary surface materials suggests that the comet is a hierarchical dust aggregate formed through gravitational collapse of a bound clump of small dust aggregates so-called ‘pebbles’ in the gaseous solar nebula. Since pebbles are the building blocks of comets, which are the survivors of planetesimals in the solar nebula, estimating the size of pebbles using a combination of thermal observations and numerical calculations is of great importance to understand the planet formation in the outer Solar system. In this study, we calculated the thermal inertias and thermal skin depths of the hierarchical aggregates of pebbles, for both diurnal and orbital variations of the temperature. We found that the thermal inertias of the comet 67P/Churyumov–Gerasimenko are consistent with the hierarchical aggregate of cm- to dm-sized pebbles. Our findings indicate that the icy planetesimals may have formed via accretion of cm- to dm-sized pebbles in the solar nebula.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.