Abstract

A thermal-induced dielectric switching has been realized in two ion-pair crystal [C2H6N5]+·[H2PO4]- (1, C2H6N5 = 3,5-diamino-1,2,4-triazolinium) through single-crystal-to-single-crystal phase transition (SCSC-PT). Upon cooling from room temperature, the 1D cation stripes that are composed of [C2H5N5]+ cations have undergone a 90° sharp rotation around the c axis, accompanied by the transition of crystal stacking from loose unparallel (dynamic state) to compression parallel (static state) and reorientation of dipoles on the [C2H5N5]+ cation, which thus resulted in high dielectric state to low dielectric state transformation. While on the warming run, the reverse process was rather sluggish, resulting in a reversible dielectric switching with ultralarge (about 40K wide) hysteresis loop near room temperature. It is thought that the large-sized polar cation stripes have a predominant influence on the switching properties of 1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.