Abstract
Conventional heating was used to expose cells of Listeria monocytogenes, either in broth or in situ on chicken skin, to the mean times and temperatures that are achieved during a 28 min period of microwave cooking of a whole chicken. Heating L. monocytogenes by this method in culture broth resulted in a reduction in viable cell numbers by a factor of greater than 10(6) upon reaching 70 degrees C. Simulated microwave cooking of L. monocytogenes in situ, on chicken skin, resulted in more variability in the numbers of survivors. Heating for the full cook time of 28 min, however, resulted in a mean measured temperature of 85 degrees C and no surviving listerias were detected. This indicated a reduction in viable numbers of greater than 10(6). To reduce temperature variation, cells were heated on skin in a submerged system in which exposure to 70 degrees C for 2 min resulted in a reduction in viable cell numbers of all strains of listerias tested of between 10(6) and 10(8). These results show that when a temperature of 70 degrees C is reached and maintained for at least 2 min throughout a food there is a substantial reduction in the numbers of L. monocytogenes. The survival of this organism during microwave heating when temperatures of over 70 degrees C are reported is probably due to uneven heating by microwave ovens resulting in the presence of cold spots in the product. The heat resistance of L. monocytogenes is comparable with that of many other non-sporing mesophilic bacteria.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.