Abstract

The present study demonstrates a simple approach to enhancing thermal stability of butyrylcholinesterase (BChE) by using natural polymers. Analysis of thermal inactivation of the tetrameric BChE in starch and gelatin gels at 50–64 °C showed that thermal inactivation followed second-order kinetics and involved two alternating processes of BChE inactivation, which occurred at different rates (fast and slow processes). The activation enthalpy ΔH# and the activation entropy ΔS# for BChE in starch and gelatin gels were evaluated. The values of ΔH# for the fast and the slow thermal inactivation of BChE in starch gel were 61 ± 3, and 22 ± 2 kcal/mol, respectively, and the values of ΔS# were 136 ± 12 and −2.03 ± 0.05 cal∙K−1∙mol−1, respectively. Likewise, the values of ΔH# for BChE in gelatin gel were 58 ± 6 and 109 ± 11 kcal/mol, and the values of ΔS# were 149 ± 16 and 262 ± 21 cal∙K−1∙mol−1, respectively. The values of the activation parameters obtained in this study suggest that starch gel produced a stronger stabilizing effect on BChE exposed to elevated temperatures over long periods compared with gelatin gel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.