Abstract

Lattice and surface impurity reactions and structural changes induced by them in slightly carbonated hydroxyapatite (SCHA) treated at 25-1100 degrees C were comprehensively studied. The SCHA was processed by a conventional wet synthesis at a high possible temperature(96 degrees C) using ammonium containing parent reagents. IR-spectroscopy, XRD, TG-DTA technique and mass spectrometric thermal analysis (MSTA) were employed for characterization of the samples. NH4+ with H3O+ in cationic-and CO3(2-) (A- and B-positions) with HPO4(2-) in anionic sites, and H2O, CO3(2-)(HCO3(-)) NO3(-), NxHy on the surface of particles were found and considered as impurity groups. Complicated changes in lattice constants of theSCHA stepwise annealed in air (for 2 h) were revealed; the changes were associated with reactions of the impurity groups. Filling the hexed sites with hydroxyl ions above 500 degrees C was shown to happen partly due to lattice reactions but was mainly owing to hydrolysis of the SCHA by water molecules in air. Decomposition of CO3(2-) groups proceeded through both thermal destruction and reactions with some of the impurity ions. The decarbonation in A-sites occurred at much lower temperatures (450-600 degrees C) than in B-sites (700-950 degrees C) and was first revealed to happen in two stages: due to an impurity reaction around 500 degrees C, and then through thermal destruction at 570 degrees C. A redistribution of CO3(2-) ions, decreasing in amount on the whole, was observed upon annealing above 500 degrees C. To avoid possible erroneous conclusions from TG-data, a sensitive method was shown to be required for monitoring gaseous decomposition products (such as the MSTA in this study), in case several impurity groups were present in a SCHA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call