Abstract
Efficient thermal harvesting energy applications, based on the Seebeck effect, require systems with high thermal impedance to enhance both the thermal and electric response. In this work, we study the thermal impedance (Zth) response on steady conditions of metal dipole nanoarrays fabricated on polyimide and silicon dioxide (SiO2) substrates by electron beam lithography. The experimental thermal characteristics of the nanoarray, measured with a thermal camera, reveals a high delta temperature of 89.8 °C. and a high thermal impedance of 292.2 (K/W) in polyimide, in contrast with the ones obtained in SiO2, which were around 63.9 °C and 13.5 (K/W), respectively. In addition, numerical simulations were performed using COMSOL multi-physics software. The numerical results support a higher thermal impedance in polyimide that the one for SiO2. These results show that polyimide could be better thermal responsive substrate for thermal harvesting energy applications compared with its counterpart fabricated on SiO2.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.