Abstract

Composite films of polyimide (PI) and poly(tetrafluoroethylene-co-hexafluoropropylene) (FEP) or of PI and poly(tetrafluoroethylene) (PTFE) were prepared by thermal imidization of the poly(amic acid) (PAA) precursors of poly(pyromellitic dianhydride-4,4′-oxydianiline) (PMPA-ODA) on glycidyl methacrylate (GMA) graft-copolymerized FEP and PTFE films. The resulting PI/GMA-g-FEP and PI/GMA-g-PTFE composites exhibited T-peel adhesion strength of approximately 7.0 and 6.5 N/cm, respectively, compared to negligible adhesion strength for the laminates prepared from thermal imidization of the PAA on the pristine and the Ar plasma-treated FEP and PTFE films. X-ray photoelectron spectroscopy (XPS) results revealed that both the PI/GMA-g-FEP and PI/FEP-g-PTFE composite films delaminated by cohesive failure inside the FEP and PTFE films, respectively. The so-delaminated PI films with a covalently tethered FEP or PTFE surface layer were highly hydrophobic, having static water contact angles above 140°. The highly hydrophobic property depends on both the composition and roughness of the delaminated surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call