Abstract

Thermal imaging in the midwave infrared plays an important role for numerous applications. The key functionality is imaging devices in the atmospheric window between 3 and 5 μm, where disturbance from fog, dust, and other atmospheric influence could be avoided. Here, we demonstrate sensitive thermal imaging with HgTe colloidal quantum dot (CQD) photovoltaic detectors by integrating the HgTe CQDs with plasmonic structures. The responsivity at 5 μm is enhanced 2- to 3-fold over a wide range of operating temperatures from 295 to 85 K. A detectivity of 4 × 1011 Jones is achieved at cryogenic temperature. The noise equivalent temperature difference is 14 mK at an acquisition rate of 1 kHz for a 200 μm pixel. Thermal images are captured with a single-pixel scanning imaging system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.