Abstract
Smart power DMOSes are analyzed under thermally unstable conditions up to the destruction level using a new compact version of the transient interferometric mapping (TIM) method. High accuracy phase measurements are achieved employing superluminescent diodes and focal plane array cameras. Two-dimensional thermal mapping at two time instants during a single stress pulse is performed in the range of 100 μs to few milliseconds. The size of the region where the parasitic bipolar transistor becomes thermally activated at the onset of thermal runaway is determined. The results are correlated to conventional failure analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Microelectronics Reliability
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.