Abstract

In this paper, molecular dynamics simulations of simple disc-shaped particles are used to investigate the free self-assembly of defect-free fibers. Depending on the choice of particle shape and interaction strength, the formed fibers are reproducibly either straight or, for reasons of packing efficiency, spontaneously chiral. As they grow radially, increasing stresses cause chiral fibers to untwist either continuously or via morphological rearrangement. It is also found that, due to the kinetics of fiber initiation, the isotropic solution has to be significantly supercooled before aggregation takes place. As a result, the thermal hysteresis of one formed fiber extends to 13.9% of the formation temperature. In the presence of a three-thread seed cluster of 15 particles, however, monotonic fiber growth is observed 9.3% above the normal formation temperature. Thus, as in many experimental systems, it is the kinetic pathway, rather than the thermodynamic stability of the final assembly, that dominates the observed behavior.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.