Abstract

The thermal hydrocracking kinetics of Chinese Gudao vacuum residue was studied in a batch autoclave reactor. The temperature ranged in 390–435°C and the initial hydrogen pressure was 7.0 MPa at 20°C. Ammonium phosphomolybdate (APM) in its dispersed phase was the catalyst. The reaction products, gas, naphtha, atmospheric gas oil (AGO), vacuum gas oil (VGO) and coke, were separated during and after experiments, and their yields vs. reaction time were obtained, for four reaction temperatures: 390, 405, 420, and 435°C. The activation energy was calculated from a traditional kinetic model to be 218.6 kJ/mol. A new kinetic model was proposed in this work that allows for the calculation of activation energy with a minimum number of three tests, each at a different temperature. This is comparable to the traditional model which requires a minimum of 12 tests; a minimum of four tests for one temperature and a minimum of three temperatures. The activation energy calculated from the new model with four tests is 229.6 kJ/mol, only 5% greater than that obtained from the traditional model. The reaction rate constants obtained from this model are also consistent with those from the traditional model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call