Abstract

This paper examines the applicability of a mathematical dynamic model developed here for the simulation of the thermal-hydraulic transient analysis for light water reactors (LWRs). The thermal-hydraulic dynamic modeling of the fuel pin and adjacent coolant channel in LWRs is based on the moving boundary concept. The fuel pin model (FUELPIN) with moving boundaries is developed to accommodate the core thermal-hydraulic model, with detailed thermal conduction in fuel elements. Some results from transient calculations are examined for the first application of the thermal-hydraulic model and the fuel pin model with moving boundaries in a boiling water reactor (BWR). An accurate minimum departure from nucleate boiling ratio (MDNBR) and its axial MDNBR boundary versus time within the fuel channel are predicted during transients. Transient analysis using a known thermal-hydraulic code, COBRA and FUELPIN linked with a PWR systems analysis code show that the thermal margin gains more by a transient MDNBR approach than the traditional quasi-steady methodology for a pressurized water reactor (PWR). The studies of the overall nuclear reactor system show that moving boundary formulation provides an efficient and suitable tool for thermal transient analysis of LWRs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call