Abstract

CFD study is done here to propose an efficient PCHE (Printed Circuit Heat Exchanger) model; used as a recuperator in International Thermonuclear Experimental Reactor (ITER). 3D steady state conjugate heat-transfer numerical simulations are done; considering the variation of thermo-physical properties as a function of temperature. Helium is used as a working fluid and alloy 617 as solid substrate. The study is done for various angle of bend (θ = 0°(straight), 5°, 10° and 15°) and Reynolds number (Re = 350, 700, 1400 and 2100). Various types of flow patterns, within one wavy-section, are presented to analyze thermal-hydraulic characteristics. Thermal hydraulic performance parameters are presented for the various wavy-sections as well as within a section; and for the complete PCHE model. Heat transfer enhancement as compared to pressure penalty is higher for the wavy channel; and increases with increasing Re and θ. Wavy as compared to plane channel based PCHE is demonstrated here to give better thermal-hydraulic performance. A detailed characteristics as well as performance-parameters for thermal hydraulics in a 3D wavy channel based PCHE model − not found in the literature − is presented here.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.