Abstract

Abstract The spent nuclear fuel discharged from power reactors is a very important problem facing the future of using power reactors in electricity production. This paper focuses on the thermal-hydraulic behaviour of the VVER spent fuel in the vault dry storage system under forced convection mode, which is experimentally and numerically investigated. For this purpose, a test rig is designed and constrained to simulate the cooling loop vault system that contains four spent fuel assemblies discharged from the VVER reactor, which are represented by four electric heaters. A numerical simulation is performed by the ANSYS-CFX fluid dynamics code. The effects of decay heat generation and inlet air velocity are investigated as an operating condition. Also, the effect of the type of the Vault System tube material is being studied. The results show that the increase in the inlet air velocity improves the coolability of the fuel, while the increase in decay heat leads to a decrease in the coolability of the fuel. The used velocity range is (0.1 < V < 0.5 m/s) for inlet coolant air and heater power (20 < P < 100 W). Three tube materials (aluminum, copper, and stainless steel) were evaluated for mechanical properties, including thermal conductivity, to assess the feasibility of their use as tubes in the spent fuel storage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.