Abstract

The impediment of core disruption is realized through the provision of diverse and redundant safety features in the design complemented by the use of inherent passive mechanisms that respond to the accident condition by ensuring convenient dispersal of molten core material from the core in the early stage of the accident. In light of this, a promising design strategy Fuel Assembly Inner DUct Structure (FAIDUS) core concept is proposed to enhance the axial discharge capability of molten fuel from core for the exclusion of core wide melt pool formation. The sequence of event during the course of relocation in the FAIDUS is analysed employing a transient integrated thermal-hydraulic model. The effectual performance of various FAIDUS design options in mitigating the accident is evaluated. Based on this, the preferred design choice conforming the laid down criteria is selected in the present study. The simulation results suggest that FAIDUS design concept delivers the best alternative way for extenuating accident progress through a comprehensive melt relocation strategy of greater reliability in an intrinsic way.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.