Abstract

Thermal infrared (IR) images represent the heat patterns emitted from hot object and they don’t consider the energies reflected from an object. Objects living or non-living emit different amounts of IR energy according to their body temperature and characteristics. Humans are homoeothermic and hence capable of maintaining constant temperature under different surrounding temperature. Face recognition from thermal (IR) images should focus on changes of temperature on facial blood vessels. These temperature changes can be regarded as texture features of images and wavelet transform is a very good tool to analyze multi-scale and multi-directional texture. Wavelet transform is also used for image dimensionality reduction, by removing redundancies and preserving original features of the image. The sizes of the facial images are normally large. So, the wavelet transform is used before image similarity is measured. Therefore, this paper describes an efficient approach of human face recognition based on wavelet transform from thermal IR images. The system consists of three steps. At the very first step, human thermal IR face image is preprocessed and the face region is only cropped from the entire image. Secondly, “Haar” wavelet is used to extract low frequency band from the cropped face region. Lastly, the image classification between the training images and the test images is done, which is based on low-frequency components. The proposed approach is tested on a number of human thermal infrared face images created at our own laboratory and “Terravic Facial IR Database”. Experimental results indicated that the thermal infra red face images can be recognized by the proposed system effectively. The maximum success of 95 % recognition has been achieved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.