Abstract

Humans and other warm-blooded mammals maintain their body temperature within a narrow range in a process called homeostasis. This ability to maintain an internal temperature, which is relatively insensitive to changes in the external environment or heat load is vital for all complex processes that sustain life. Without the ability to regulate temperature, materials and devices that experience large temperature gradients or temperature cycles are vulnerable to performance degradation or even catastrophic failure. Thermal control akin to the way living organisms achieve thermal homeostasis is particularly important in environments such as space, where changing solar illumination can cause large temperature variations. Various systems have been used to mitigate temperature fluctuations; however, they tend to be bulky and require power. Here, we model micropatterned phase-change materials to design an efficient, solid-state alternative, which requires no external input power. Our design is based on switchable thermal emission, which takes advantage of temperature-induced phase-change behavior in thin films of vanadium oxide on silicon microcones.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.