Abstract

Here we report the results of our petrologic and mineralogical study of enstatite (E) chondrites in order to explore their thermal histories. We studied silica phases in 20 E chondrites by laser micro Raman spectroscopy to determine the silica polymorphs they contain. Silica phases are commonly present in E chondrites and their polymorphs reflect the physical conditions of formation. The samples studied here include EH3-5, EL3-6, E chondrite melt rocks, and an anomalous E chondrite. We identified quartz, tridymite, cristobalite, and silica glass in the samples studied. EH4 5 and EH melt rocks are divided into high and low temperature classes based on niningeritealabandite solid solutions. EH3, EL3, and some EH melt rocks of the high temperature class contain tridymite and cristobalite. We suggest that tridymite and cristobalite crystallized in chondrules and E chondrite melts, followed by rapid cooling, leading to the survival of these silica polymorphs. EH4 and EL4 chondrites also contain tridymite and cristobalite in their chondrules, indicating that these silica polymorphs survived low temperature metamorphism (as estimated from opaque mineral geothermometers) because of the sluggishness of the transition to a more stable polymorph. Tridymite and cristobalite in EL6 chondrites reflect the high temperature processes experienced by these meteorites. On the other hand, some EH5 chondrites and EH melt rocks of the low temperature class contain quartz, which may be a product of the transition from tridymite or cristobalite during a long period of low temperature metamorphism. Although the thermal history of E chondrites have been previously estimated from opaque minerals, such compositions mainly reflect low temperature processes. However, we can reconstruct the primordial thermal processes and subsequent cooling histories of E chondrites from their silica polymorphs. The E chondrites have complicated thermal histories, which produced the observed variations among them.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.