Abstract

Abstract Advances in low-temperature thermochronology, and the wide range of geologic problems that it is used to investigate, have prompted the routine use of thermal history (time-temperature, tT) models to quantitatively explore and evaluate rock cooling ages. As a result, studies that investigate topics ranging from Proterozoic tectonics to Pleistocene erosion now commonly require a substantial numerical modeling effort that combines the empirical understanding of chronometer thermochemical behavior (kinetics) with independent knowledge or hypotheses about a study area's geologic history (geologic constraints). Although relatively user-friendly programs, such as HeFTy and QTQt, are available to facilitate thermal history modeling, there is a critical need to provide the geoscience community with more accessible entry points for using these tools. This contribution addresses this need by offering an explicit discussion of modeling strategies in the program HeFTy. Using both synthetic data and real examples, we illustrate the opportunities and limitations of thermal history modeling. We highlight the importance of testing the sensitivity of model results to model design choices and describe a strategy for classifying model results that we call the Path Family Approach. More broadly, we demonstrate how HeFTy can be used to build an intuitive understanding of the thermochronologic data types and model design strategies that are capable of discriminating among geologic hypotheses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.