Abstract

Hydrogen peroxide (H2O2), historically, due to its broad applications in the chemical industries, has caused many serious fires and explosions worldwide. Its thermal hazards may also be incurred by an incompatible reaction with other chemical materials, and a runaway reaction may be induced in the last stage. This study applied thermal analytical methods to explore the H2O2 leading to thermal accidents by incompatibility and to discuss what might be formed by the upset situations. In this study, the thermal hazard analyses were conducted with various solvents, propanone (CH3COCH3), Fe2O3, FeSO4, H2SO4, HCl, HNO3, H3PO4, NaOH, LiOH, and KOH which were deliberately selected to individually mix with H2O2 for investigating the degree of hazard. Differential scanning calorimetry (DSC) was employed to evaluate the thermal hazard of H2O2-mixed ten chemicals. The results indicated that H2O2 is highly hazardous while separately mixed with ten materials, as a potential contaminant. Fire and explosion hazards could be successfully reduced if the safety-related data are suitably imbedded into manufacturing processes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.