Abstract

Using a two-dimensional square lattice Heisenberg model with a Rashba-type Dzyaloshinskii-Moriya interaction, we demonstrate that chiral spin fluctuations can give rise to a thermal Hall effect in the absence of any static spin texture or momentum space topology. It is shown by means of Monte Carlo and stochastic spin dynamics simulations that the thermal Hall response is finite at elevated temperature outside of the linear spin wave regime and consistent with the presence of thermal fluctuation-induced nontrivial topology. Our result suggests that the high-fluctuation phases outside of the conventional regime of magnonics may yet be a promising area of exploration for spin-based electronics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.