Abstract

ABSTRACTThe thermoelastic problem of a transversely isotropic hollow cylinder containing a circumferential crack is investigated in the present article based on the non-Fourier heat conduction theory. The temperature and stress fields are obtained by solving the coupled partial differential equations in the Laplace domain, and corresponding thermal axial stress with minus sign is then applied to the crack surface to form a mode I crack problem. Three different kinds of crack are considered, and the singular integral equation method is adopted to solve the fracture problem. Finally, with the definition of stress intensity factor, the effect of material properties, coupling parameter, and crack geometry on the hyperbolic thermal fracture responses of a transversely isotropic hollow cylinder excited by a thermal loading is visualized.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.