Abstract
We investigate the dynamics of plasma-based acceleration processes with collisionless particle dynamics and non-negligible thermal effects. We aim at assessing the applicability of fluid-like models, obtained by suitable closure assumptions applied to the relativistic kinetic equations, thus not suffering from statistical noise, even in the presence of a finite temperature. The work here presented focuses on the characterization of pressure anisotropies, which crucially depend on the adopted closure scheme, and hence are useful to discern the appropriate thermal fluid model. To this aim, simulation results of spatially resolved fluid models with different thermal closure assumptions are compared with the results of particle-in-cell simulations at changing temperature and amplitude of plasma oscillations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.