Abstract

The thermal fluctuations in the tilt angles of a disk levitated above a liquid–liquid interface by a repulsive Casimir force are compared with those of a disk suspended by surface tension at the interface. By using a proximity force approximation, the probability density function of the tilt angle of a copper disk immersed in cyclohexane in contact with water is calculated. We show that the tilt angle of the levitated disk of micron-order radius exhibits comparatively large fluctuations. Observance of the difference in the amplitude of the fluctuations could be helpful in determining the position of the disk relative to the liquid–liquid interface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.