Abstract

We investigate the role of lipid chemical potential on the shape, thickness, and molecular orientation (lipid tilting relative to the monolayer surface normal) of lipid bilayers via a continuum-level model. We predict that decreasing the chemical potential at constant temperature, which is associated with an increase in surface tension via the Gibbs-Duhem relation, leads both to the well known reduction in thermal membrane undulations and also to increasing fluctuation amplitudes for bilayer thickness and molecular orientation. These trends are shown to be in good agreement with molecular simulations, however it is impossible to achieve full quantitative agreement between theory and simulation within the confines of the present model. We suggest that the assumption of lipid volume incompressibility, common to our theoretical treatment and other continuum models in the literature, may be partially responsible for the quantitative discrepancies between theory and simulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.