Abstract

We use gauge/gravity duality to investigate the effect of thermal fluctuations on the dissociation of the quarkonium mesons in strongly coupled (3+1)-dimensional gauge theories. The purpose of this paper is to introduce a new approach to study the instability and probable first-order phase transition of a probe D7-brane in the dual gravity theory. We explicitly show that for the Minkowski embeddings with their tips close to the horizon in the background, the long wavelength thermal fluctuations lead to an imaginary term in their action, signaling an instability in the system. Due to this instability, a phase transition is expected. On the gauge theory side, it indicates that the quarkonium mesons are not stable and dissociate in the plasma. Identifying the imaginary part of the probe brane action with the thermal width of the mesons, we observe that the thermal width increases as one decreases the mass of the quarks. Also keeping the mass fixed, thermal width increases by temperature as expected. We will also investigate the effect of the magnetic field on the mass and the thermal width.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.