Abstract

AbstractThe Brownian thermal noise which affects the cantilever dynamics of a dynamic atomic force microscope (dAFM) is discussed, both when it works in air and in presence of water. The relationship between the cantilever thermal fluctuations and its interactions with the surrounding liquid is investigated, and an analytical model to describe the interaction forces is presented. The novelty of this approach is that a very simple integral expression to describe fluid–cantilever interactions is found. More specifically, besides including fluid inertia and viscosity, an additional diffusivity term needs to be considered, whose crucial influence for the correct evaluation of the cantilever response to the thermal excitation is shown. The coefficients of the model are obtained by using numerical results for a 2D fluid flow around a vibrating rectangular cross section, so that the dynamics of a dAFM cantilever can be characterized when it also operates in tilted conditions. The analytical model is validated by comparison with numerical and experimental data previously presented in literature, and with experiments carried out by the authors. It is shown that the present model can provide an extremely accurate prediction of the beam response up and beyond the second resonant peak.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.