Abstract

ABSTRACTThermal fatigue resistance of carbon-carbon composites with three different fiber surface treatments is studied in thermal cycles between 100 °C and 1,700 °C up to a number of cycles of 100 in free and restricted expansion conditions. The effects of thermal cycles were studied by SEM paying attention especially to structural damage and interfacial debonding between fibers and matrix. Bending tests subsequent to 10 thermal cycles were used to study the effect of thermal cycling on mechanical properties of the composites. The effect depends on the surface treatment of fibers prior to pyrolization. In some cases, the bending strength decreased due to the thermal cycling, whereas a suitable surface treatment minimized the damaging effect and increased the pseudo-ductility of the composite.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.